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Abstract
The flora of sub-Antarctic Marion Island forms part of the unique South Indian Ocean Biogeographic Province, and is 
under threat from climate change and invasive species. Current information on the flora is necessary to rapidly identify and 
manage future changes. We conducted a literature search on the taxonomy of indigenous vascular plant species on Marion 
Island and found nomenclatural changes following taxonomic revisions for Austroblechnum penna-marina (Poir.) Gasper & 
V.A.O.Dittrich, Carex dikei (Nelmes) K.L.Wilson, Leptinella plumosa Hook.f., Notogrammitis crassior (Kirk) Parris, Phleg-
mariurus saururus (Lam.) B.Øllg., and Polypogon magellanicus (Lam.) Finot. Additionally, Ranunculus moseleyi Hook.f. 
was removed from our species checklist due to its long absence in floristic surveys, leaving 21 species in the indigenous 
vascular plant flora present on Marion Island. We also amplified and sequenced the universal plant barcoding loci rbcL and 
matK for 19 and 13 species, respectively, and found that ample interspecific genetic distance and minimal intraspecific genetic 
distance allowed for easy discrimination between species. Lastly, we obtained genome size estimates using flow cytometry 
for 12 species. Mean 2C genome size for species on Marion Island ranged from 0.44 to 21.44 pg, which is on the lower end 
of the known range for vascular plant species. We detected two distinct cytotypes in Poa cookii (Hook.f.) Hook.f. and one 
cytotype in all other species measured.
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Introduction

The sub-Antarctic terrestrial bioregion comprises a small 
number of islands located within the vast Southern Ocean 
surrounding Antarctica. The flora on these islands is 

relatively species-poor, filtered by harsh environmental 
conditions including cool, wet, and windy climates, and 
geographic isolation which necessitates that colonizing spe-
cies disperse long distances from the nearest species pools 
(Chown et al. 1998). Although some plant species that occur 
in the sub-Antarctic are widely distributed across multiple 
islands and even parts of South America, Australia, and 
New Zealand, several species have restricted distributions Electronic supplementary material  The online version of this 

article (https​://doi.org/10.1007/s0030​0-020-02747​-7) contains 
supplementary material, which is available to authorized users.
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that contribute to making these floras unique, such as the 
South Indian Ocean Province endemics Elaphoglossum ran-
dii Alston & Schelpe, Colobanthus kerguelensis Hook.f., 
Poa cookii (Hook.f.) Hook.f., Pringlea antiscorbutica R.Br. 
ex Hook.f., and Ranunculus moseleyi Hook.f. (Greene and 
Walton 1975). The sub-Antarctic islands are among the most 
isolated landmasses on Earth and suffer relatively few direct 
human impacts compared to continental mainlands, but their 
ecosystems are still threatened by climate change (Pendle-
bury and Barnes-Keoghan 2007; Le Roux and McGeoch 
2008; Bergstrom et al. 2015) and the introduction and estab-
lishment of invasive species (Frenot et al. 2001; Jansen van 
Vuuren and Chown 2007; Lee et al. 2007; Le Roux et al. 
2013; Greve et al. 2017). With relatively simple and low-
diversity communities, sub-Antarctic ecosystems may be 
especially vulnerable to invasion by non-indigenous species 
(Case 1990; Stachowicz et al. 1999; Lyons and Schwartz 
2001), and with climate change moderating temperatures 
and wind patterns, the establishment and expansion in range 
of more species are expected to occur in the near-future 
(Ryan et al. 2003; Chown and Brooks 2019). Therefore, a 
thorough characterization of the present flora is necessary 
to rapidly identify and manage future changes.

Marion Island, a volcanic island approximately 290 km2 
in area and 450,000 years in age, is one of the sub-Antarctic 
islands. Together with Prince Edward Island, they comprise 
the Prince Edward Island (PEI) archipelago in the southern 
Indian Ocean (46.9° S, 37.8° E), approximately 1770 km 
southeast of South Africa, the nearest continental landmass 
(Fig. 1; Hänel and Chown 1998; McDougall et al. 2001). 
The PEI archipelago, along with the Crozet, Kerguelen, 
Heard, and McDonald islands, form the South Indian Ocean 
Biogeographic Province (Hänel and Chown 1998). The 

vegetation of Marion Island consists of salt spray-tolerant 
species along the rugged coastline, marshy mire communi-
ties on the lowland coastal plains, closed fern-dominated 
carpets on lower slopes, and open fellfield communities near 
the upper elevational vegetation line (Huntley 1971; Smith 
and Mucina 2006). Plant collections during occasional visits 
to Marion Island have been made since the late nineteenth 
century, but the first extensive survey of the flora was only 
conducted in 1965–1966 as part of the South African Bio-
logical and Geological Expedition (Huntley 1971). Infor-
mation on the flora of Marion Island has been revised as a 
result of this and continued annual scientific expeditions to 
the island (Greene and Greene 1963; Huntley 1971; Greene 
and Walton 1975; Hänel and Chown 1998), with the most 
recent species list for vascular plants compiled by Gremmen 
and Smith (2008) comprising 22 indigenous species and 21 
introduced species.

DNA sequencing data, which heretofore have not been 
generated for most plant species on sub-Antarctic islands, 
can be used to assess evolutionary relationships and to help 
identify specimens. The flora of Marion Island comprises 
few species, and for the most part, is relatively easy to iden-
tify based on morphology alone. However, the development 
of additional techniques to identify specimens, especially 
when morphology is unreliable, would help facilitate the 
study and management of the flora. DNA barcoding is a 
method in which sequences from standardized DNA regions 
are used to distinguish and identify specimens by compari-
son to a reference sequence library (Hebert et al. 2003; Kress 
et al. 2015). This approach can be especially useful for spe-
cies-rich groups where taxonomic expertise is limited and 
for fragmented, small, or sterile specimens where identifica-
tion based on morphology is difficult (Hollingsworth et al. 
2016). For plants, the two-marker barcode comprising the 
plastid genes rbcL and matK has been found to be recover-
able and informative for most groups (CBOL Plant Working 
Group 2009; Hollingsworth et al. 2011; Li et al. 2011), and 
reference sequence libraries have been generated for several 
large floras and taxonomic groups (Lahaye et al. 2008; Kress 
et al. 2009; Burgess et al. 2011). Reference sequences for 
the barcoding loci for the sub-Antarctic flora would help 
facilitate the rapid identification of species and may also 
be useful for ecological forensic applications where only 
fragmented or processed samples are available, such as in 
belowground root communities and in herbivore scat (Hol-
lingsworth et al. 2016).

The extreme abiotic conditions of the sub-Antarctic may 
not only limit the richness of the vascular flora in the region, 
but could also affect genomic characteristics of the species 
that occur there. Genome size and ploidy level are vari-
able traits among plant species that may be informative for 
evolutionary and ecological relationships (Ohri 1998). For 
instance, the flora of the northern polar Arctic region has a 
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Fig. 1   Map indicating the location of Marion and Prince Edward 
islands, and other islands of the South Indian Ocean Biogeographic 
Province, in the Southern Ocean. World coastline data from Natural 
Earth (naturalearthdata.com)
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disproportionately high number of polyploid lineages (Bro-
chmann et al. 2004). It has been proposed that polyploidy, 
or whole-genome duplication, may facilitate adaptation to 
harsh environmental conditions (Grant 1981; te Beest et al. 
2012) or may result from disturbance to the meiotic process 
due to low temperature stress (Bomblies et al. 2015). Poly-
ploidy can have significant effects on cellular and genomic 
processes, as well as diversification and macroevolutionary 
processes (Otto 2007; te Beest et al. 2012; Scarpino et al. 
2014; Soltis et al. 2014). Genomic patterns in the sub-Ant-
arctic and Antarctic flora have been studied in a few areas 
(Bennett et al. 1982; González et al. 2016), but it is unknown 
if there are general trends that reflect those observed in the 
northern polar region (but see Rice et al. 2019). Addition-
ally, many polyploids correspond to cryptic species that are 
morphologically similar to their diploid predecessors (Soltis 
et al. 2007; Husband et al. 2013), especially in autopoly-
ploids (Soltis et al. 2007; Mairal et al. 2018). Thus, the pos-
sible presence of cryptic lineages makes the estimation of 
genome size and ploidy level especially relevant for unrave-
ling evolutionary processes in sub-Antarctic ecosystems.

In this study, we give an update on the vascular flora of 
sub-Antarctic Marion Island and provide genetic resources 
to facilitate future research. First, we conducted a literature 
survey to find the most current taxonomy and nomencla-
ture for the indigenous vascular plant species on the island, 
and note changes to the species present based on observa-
tions of experts working on the island. Second, we gener-
ated sequence data for the plant DNA barcoding loci rbcL 
and matK and evaluated recoverability and discriminatory 
power between taxa of these markers. Lastly, we provide 
new genome size estimates obtained from flow cytometry 
and compare measurements from Marion Island specimens 
with previously published genome size data for related taxa.

Materials and methods

Literature survey

A list of the indigenous vascular plant species of Marion 
Island was compiled from a recent checklist (Gremmen and 
Smith 2008) and unpublished observations and records of 
researchers who have worked extensively on the island. Spe-
cies recorded as a single specimen on the island, namely 
Ochetophila trinervis (Gillies ex Hook.) Poepp. ex Endl. 
(Kalwij et al. 2019) and Malus sp. (M. Greve, personal 
communication), or with uncertain indigenous status were 
excluded from our list. Literature searches were conducted 
in Google Scholar (scholar.google.com) using each species 
name and “ ~ phylogeny”, “ ~ taxonomy”, or “ ~ systematic” 
as the search terms (searched 11 August 2020). Search 
results and references cited therein were used to ascertain 

whether taxonomic and nomenclatural changes have been 
made since the publication of the previous checklist. We 
compared our findings with the status of names on Plants 
of the World Online (www.plant​softh​eworl​donli​ne.org; 
accessed 11 August 2020).

Sampling, DNA extraction, PCR, and sequencing

Leaf samples from all indigenous vascular plant species on 
Marion Island were collected by experts in the flora of the 
island during trips to the island in 2016 and 2018 (Online 
Resource 1). Leaf samples were preserved in silica gel and 
later ground for DNA extraction using a modified CTAB 
protocol (Doyle and Doyle 1987). Two plastid loci used in 
DNA barcoding of plants were amplified by PCR following 
the PCR programme in Zietsman et al. (2009) besides the 
modifications below. The rbcL locus was amplified using the 
primers P1630 (rbcLa-F) and 1.2-rbcL (rbcLa-R) (Fofana 
et al. 1997; Levin et al. 2003) with an annealing temperature 
of 55 °C. The matK locus was amplified using the prim-
ers matK-472F (5′-CCC​RTY​CAT​CTG​GAA​ATC​TTG​GTT​
C-3′) and matK-1248R (5′-GCT​RTR​ATA​ATG​AGA​AAG​
ATT​TCT​GC-3′) with an annealing temperature of 52 °C, 
and for recalcitrant samples of ferns, the fern-specific prim-
ers FERmatK-fEDR and FERmatK-rAGK (Kuo et al. 2011) 
were also tested with an annealing temperature of 50 °C. 
PCR products were purified before using as templates in 
sequencing reactions with the same primers as in PCR, and 
sequence reads were generated on an ABI 3730 Genetic 
Analyzer at the Stellenbosch University Central Analyti-
cal Facilities DNA Sequencing Unit (Stellenbosch, South 
Africa). Sequence chromatograms were checked, sequences 
were assembled into contigs, and consensus sequences of 
contigs were extracted using Geneious v9.1.6 (Biomatters, 
Auckland, New Zealand). Sample collection data and num-
ber of samples sequenced for each species can be found in 
Online Resource 1.

Genetic distance and phylogenetic analyses

For each locus, sequences were aligned in MAFFT (Katoh 
et al. 2002) using the Auto strategy and default settings. 
Pairwise percent identities were calculated in Geneious 
v9.1.6 (Biomatters, Auckland, New Zealand). In addition, 
pairwise genetic distances were calculated under the Kimura 
2-parameter (K2P) model in PAUP* v4.0a166 (Swofford 
2002).

For each alignment matrix, sequence ends were manu-
ally trimmed of sites with less than 25% coverage (Joly 
et al. 2007). For an outgroup for phylogenetic analyses, 
sequences from the bryophyte Racomitrium lanugino-
sum (Hedw.) Brid. were retrieved from GenBank (acces-
sion numbers: GU373444 and HG792577 for rbcL and 

http://www.plantsoftheworldonline.org
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matK, respectively) and added to the respective alignment 
matrix. Phylogenetic analyses were performed under the 
maximum likelihood (ML) criterion in RAxML v8.2.10 
(Stamatakis 2014). We conducted a search for the best-
scoring ML tree and 100 rapid bootstraps using the 
GTR+gamma model of rate heterogeneity.

Flow cytometry for genome size

Flow cytometric analysis followed the chopping proce-
dure of Galbraith et al. (1983) using Otto’s buffers (Otto 
1990; Doležel and Göhde 1995). Briefly, nuclei were 
released after chopping 0.5 cm2 of dry leaf tissue of sam-
ples and 0.5 cm2 of fresh leaf tissue of an internal stand-
ard with a razor blade in a Petri dish containing 0.5 mL of 
Otto I buffer (0.1 M citric acid, 0.5% Tween 20). After-
wards, the nuclear suspension was filtered using a 42-μm 
nylon mesh and stained with a solution containing 1 mL 
of Otto II buffer (0.4 M Na2HPO4_12H2O), 4 mg mL−1 of 
DAPI, and 2 mg mL−1 of ß-mercaptoethanol (Castro et al. 
2011). After 5 min of incubation, samples were analyzed 
in a Partec PA II flow cytometer (Partec GmbH, Mun-
ster, Germany). The fluorescence of at least 3000 nuclei 
per sample was analyzed using FlowMax v2.4 (Partec 
GmbH). We were unable to obtain fresh tissue for these 
analyses and dried samples generally provide lower qual-
ity readings, so as a quality standard, only histograms 
with a coefficient of variation (CV) below 3.5% were 
accepted. In all cases, we only accepted peaks that were 
clearly identifiable from the background noise. The DNA 
index was calculated for all samples by dividing the rela-
tive fluorescence of the G0/G1 peak of the target species 
by the relative fluorescence of the G0/G1 peak of the 
internal standard species.

We used Bellis perennis L. (internal reference stand-
ard with 2C = 3.38 pg; Schonswetter et al. 2007) as the 
internal standard to measure Acaena magellanica (Lam.) 
Vahl. We used Solanum pseudocapsicum L. (internal ref-
erence standard with 2C = 2.58 pg; Temsch et al. 2010) 
for Callitriche antarctica Engelm. ex Hegelm., Carex 
dikei (Nelmes) K.L.Wilson, Colobanthus kerguelensis 
Hook.f., and Leptinella plumosa Hook.f.. We used Pisum 
sativum L. cv. Ctirad (internal reference standard with 
2C = 9.09 pg; Schonswetter et al. 2007) for Austroblech-
num penna-marina (Poir.) Gasper & V.A.O.Dittrich, 
Azorella selago Hook.f., Elaphoglossum randii Alston 
& Schelpe, Lycopodium magellanicum (P.Beauv.) Sw., 
Phlegmariurus saururus (Lam.) B.Øllg., Poa cookii 
(Hook.f.) Hook.f., and Polystichum marionense Alston & 
Schelpe. The number of specimens measured and stand-
ard used for each species is provided in Table 2.

Results

Taxonomic changes

Twenty-one species of vascular plants occur on Marion 
Island with unambiguous indigenous status (Table  1). 
Six species have undergone nomenclatural changes since 
the most recent checklist of Gremmen and Smith (2008), 
mostly due to revisions in generic circumscriptions. 
These species are Austroblechnum penna-marina (Poir.) 
Gasper & V.A.O.Dittrich (= Blechnum penna-marina 
(Poir.) Kuhn) (Gasper et  al. 2016, 2017), Carex dikei 
(Nelmes) K.L.Wilson (= Uncinia dikei Nelmes) (Global 
Carex Group 2015), Leptinella plumosa Hook. f. (= Cot-
ula plumosa (Hook. f.) Hook. f.) (Lloyd and Webb 1987), 
Notogrammitis crassior (Kirk) Parris (= Grammitis ker-
guelensis Tard.) (Perrie and Parris 2012), Phlegmariurus 
saururus (Lam.) B.Øllg. (= Lycopodium saururus Lam.) 
(Øllgaard 2012), and Polypogon magellanicus (Lam.) 
Finot (= Agrostis magellanica Lam.) (Finot et al. 2013). 
In the case of Carex dikei, the species on Marion Island is 
also treated as distinct from the more widely distributed 
Carex austrocompacta K.L.Wilson (= Uncinia compacta 
R.Br.) (Global Carex Group 2015), which is supported by 
phylogenetic relationships inferred from nuclear riboso-
mal DNA sequence data (Starr 2001). We also checked all 
species names on Plants of the World Online. In almost 
all cases, this confirmed that the current species name 
listed in Table 1 is the accepted name. However, for Aus-
troblechnum penna-marina, Notogrammitis crassior, and 
Phlegmariurus saururus, a different accepted name is 
given, likely because the more recent taxonomic studies 
we consulted were not considered by the online database. 
The species Ranunculus moseleyi Hook.f. had previously 
been included in the flora of Marion Island (Gremmen 
and Smith 2008) but is excluded from our list because 
it has not been recorded on Marion Island for more than 
50 years and no voucher specimens of this species from 
Marion Island are known to exist (Huntley 1971; Lehne-
bach et al. 2017).

PCR and sequencing success

The locus rbcL was successfully amplified in 19 out of 21 
vascular plant species using universal primers. The two 
species for which PCR was not successful, Elaphoglos-
sum randii and Polystichum marionense, are both ferns in 
the family Dryopteridaceae. Sequence length ranged from 
507 to 560 bp, and the trimmed alignment had a length 
of 546 bp. The locus matK was more difficult to amplify, 
being successful in only 13 out of 21 species tested. No 
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fern or lycophyte species were successfully amplified 
using universal primers or fern-specific primers. In addi-
tion, matK could not be amplified from Crassula moschata 
G.Forst. Sequence length for the matK locus ranged from 
490 to 884 bp, and the trimmed alignment was 762 bp in 
length. All sequences are available on GenBank (accession 
numbers in Online Resource 1).

Species resolution

For the locus rbcL, interspecific pairwise genetic distance 
ranged from 1.53% between Poa cookii and Polypogon 
magellanicus to 28.33% between Austroblechnum penna-
marina and Leptinella plumosa (Fig. 2, Online Resource 2). 
Interspecific pairwise identity ranged from 77.1% between 
Austroblechnum penna-marina and Colobanthus kerguelen-
sis to 98.48% between Poa cookii and Polypogon magellani-
cus. Greater sequence divergence was observed for the locus 
matK. Interspecific pairwise genetic distance ranged from 
6.47% between Poa cookii and Polypogon magellanicus to 
45.65% between Azorella selago and Poa cookii (Fig. 2, 
Online Resource 3). Notably, the genetic distance in matK 
between several pairs of angiosperms was greater than the 
largest genetic distance in rbcL between a fern and an angio-
sperm. Interspecific pairwise identity ranged from 64.88% 

between Poa cookii and Pringlea antiscorbutica to 93.8% 
between Poa cookii and Polypogon magellanicus.

For rbcL, only one haplotype was observed in each 
species, even where multiple samples of a species were 
sequenced, i.e., intraspecific genetic distance was zero in 
all such cases. However, for matK, two haplotypes were 
retrieved in different samples of Montia fontana L., Poa 
cookii, Polypogon magellanicus, and Pringlea antiscorbu-
tica. In these cases, intraspecific genetic distance ranged 
from 0.14% in Montia fontana to 0.42% in Poa cookii 
(Fig. 2, Online Resource 3).

The phylogenetic trees for rbcL and matK showed sub-
stantial branch lengths, representing significant genetic 
divergences, separating species (Fig. 3). Monophyly of 
conspecific haplotypes of Montia fontana, Poa cookii, Poly-
pogon magellanicus, and Pringlea antiscorbutica each had 
100% bootstrap support in the phylogenetic tree for matK 
(Fig. 3a). In addition, the phylogenetic trees for rbcL and 
matK generally conformed to expected relationships based 
on the known land plant phylogeny (Soltis et al. 2011; PPG 
I 2016). The angiosperm clades Poaceae comprising Poa 
cookii and Polypogon magellanicus, Caryophyllales com-
prising Colobanthus kerguelensis and Montia fontana, and 
Lamiales comprising Callitriche antarctica and Limosella 
australis R.Br., and the fern eupolypod clade comprising 

Table 1   Species of indigenous vascular plants on Marion Island (Prince Edward Island archipelago, South Africa), with taxonomic changes 
from the checklist of Gremmen and Smith (2008) highlighted

Current species name Species name in Gremmen and Smith (2008) Family

Acaena magellanica (Lam.) Vahl Acaena magellanica (Lam.) Vahl = Acaena adscendens Vahl. Rosaceae
Austroblechnum penna-marina (Poir.) Gasper & 

V.A.O.Dittrich
Blechnum penna-marina Kuhn Blechnaceae

Azorella selago Hook.f. Azorella selago Hook.f. Apiaceae
Callitriche antarctica Engelm. ex Hegelm. Callitriche antarctica Engelm. Plantaginaceae
Carex dikei (Nelmes) K.L.Wilson Uncinia compacta R.Br. = Uncinia dikei Nelmes Cyperaceae
Colobanthus kerguelensis Hook.f. Colobanthus kerguelensis Hook.f. Caryophyllaceae
Crassula moschata G.Forst. Crassula moschata G.Forst. = Tillaea moschata DC. Crassulaceae
Elaphoglossum randii Alston & Schelpe Elaphoglossum randii Alston & Schelpe Dryopteridaceae
Hymenophyllum peltatum (Poir.) Desv. Hymenophyllum peltatum (Poiret) Desv. Hymenophyllaceae
Juncus scheuchzerioides Gaudich. Juncus scheuchzerioides Gaud. Juncaceae
Leptinella plumosa Hook.f. Cotula plumosa Hook.f. Asteraceae
Limosella australis R.Br. Limosella australis R.Br. Scrophulariaceae
Lycopodium magellanicum (P.Beauv.) Sw. Lycopodium magellanicum Sw. Lycopodiaceae
Montia fontana L. Montia fontana L. Montiaceae
Notogrammitis crassior (Kirk) Parris Grammitis poeppigiana (Mett.) Pichi Serm. (= Grammitis kerguelen-

sis Tard.)
Polypodiaceae

Phlegmariurus saururus (Lam.) B.Øllg. Lycopodium saururus Lam. Lycopodiaceae
Poa cookii (Hook.f.) Hook.f. Poa cookii Hook.f. Poaceae
Polypogon magellanicus (Lam.) Finot Agrostis magellanica Lam. Poaceae
Polystichum marionense Alston & Schelpe Polystichum marionense Alston & Schelpe Dryopteridaceae
Pringlea antiscorbutica R.Br. ex Hook.f. Pringlea antiscorbutica R.Br. Brassicaceae
Ranunculus biternatus Sm. Ranunculus biternatus Sm. Ranunculaceae
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Austroblechnum penna-marina and Notogrammitis crassior 
(Kirk) Parris, as well as the major clades comprising all 
eudicots, all angiosperms, all ferns, and all euphyllophytes 
each had strong support in the rbcL phylogeny (Fig. 3b). The 
clades Poaceae, Caryophyllales, and Lamiales, as well as the 
campanulids comprising Azorella selago and Leptinella plu-
mosa and the cyperids comprising Carex dikei and Juncus 
scheuchzerioides Gaudich., each received strong support in 
the matK phylogeny (Fig. 3a).

Genome size

We determined genome size for 69 samples represent-
ing twelve species using flow cytometry (Table 2, Fig. 4). 
Mean 2C genome size ranged from 0.44 pg in Poa cookii 
to 21.44 pg in Elaphoglossum randii. For most species, the 
variation in genome size among samples was low, with only 
one cytotype inferred in each species. However, this could 
be due to our limited sampling (1–4 samples) for most spe-
cies. For Poa cookii, which we sampled more extensively 
(37 samples) due to known variation in genome size in other 
species of Poa (Mowforth and Grime 1989), there were two 
distinct clusters of values, with 34 samples having a genome 
size around 0.44 pg and three samples with a genome size 
around 0.89 pg, suggesting the presence of two cytotypes.

Discussion

Of the 22 species of indigenous vascular plants included 
in previous checklists of Marion Island’s flora (Gremmen 
and Smith 2008), six species have undergone nomenclatural 
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changes due to altered understanding of genus and species 
limits, and one species, Ranunculus moseleyi, has been omit-
ted from our list due to its absence in floristic surveys for 
more than five decades, leaving 21 species in our checklist. 
Sequences for DNA barcoding loci were generated for 19 
species for rbcL and 13 species for matK. These sequences 
include the first ones published for rbcL for nine species 
(Acaena magellanica, Carex dikei, Colobanthus kerguelen-
sis, Crassula moschata, Juncus scheuchzerioides, Leptinella 
plumosa, Poa cookii, Pringlea antiscorbutica, and Ranun-
culus biternatus) and the first sequences for matK for six 
species (Acaena magellanica, Colobanthus kerguelensis, 
Juncus scheuchzerioides, Leptinella plumosa, Polypogon 
magellanicus, and Pringlea antiscorbutica), based on a com-
parison of what was available on the GenBank sequence 
database (accessed 11 August 2020). Genome size was 
measured by flow cytometry for 12 species, including ten 
species for which this is the first report (Austroblechnum 
penna-marina, Azorella selago, Carex dikei, Colobanthus 
kerguelensis, Elaphoglossum randii, Leptinella plumosa, 
Lycopodium magellanicum, Phlegmariurus saururus, Poa 
cookii, and Polystichum marionense).

Taxonomy

Changes in our understanding of relationships among 
species and genera are reflected in changes to species 
names. In the Marion Island flora, phylogenetic evidence 
from DNA sequence data have resulted in revised generic 
placements for the species Austroblechnum penna-marina 

(Gasper et al. 2017), Carex dikei (Starr 2001; Starr et al. 
2008), Leptinella plumosa (Himmelreich et  al. 2012), 
Notogrammitis crassior (Perrie and Parris 2012; Sundue 
et al. 2014), and Phlegmariurus saururus (Field et al. 
2016; Testo et al. 2018). Generic classification was also 
changed for the grass species Polypogon magellanicus 
based on morphological data (Finot et al. 2013), but its 
relationship with other Polypogon and Agrostis species 
should be evaluated with phylogenetic analyses using 
molecular data. Additionally, Holub (1991) suggested 
that the lycophyte species Lycopodium magellanicum be 
transferred to the segregate genus Austrolycopodium, but 
molecular data do not support this classification scheme 
(Wikstrom and Kenrick 2000; Burnard et al. 2016). For all 
species, samples from Marion Island should be included 
in future phylogenetic studies to confirm the relationship 
of Marion Island populations with populations in the rest 
of the species range.

In the case of Carex dikei, not only was the generic clas-
sification changed from Uncinia, but the species on Marion 
Island was also segregated from the southern Australian 
species Carex austrocompacta (= Uncinia compacta) (Starr 
2001; Global Carex Group 2015), making this species the 
only vascular plant endemic to Marion Island. Populations 
of what has been called Uncinia compacta on other sub-
Antarctic islands, including Crozet and Kerguelen islands, 
where plants were initially described as U. mosleyana 
Boeck. (Greene and Walton 1975; Lord 2015), should be 
included in future studies to determine their relationship to 
the Marion Island and Australian species.

Table 2   Genome size 
measurements from flow 
cytometry for indigenous 
vascular plant species on 
Marion Island

a Standard error
b Coefficient of variation of individual peaks for single samples reflecting the quality of measurements
c Number of samples measured
d Internal reference standard used: B.p. = Bellis perennis, P.s. = Pisum sativum, S.p. = Solanum pseudocap-
sicum

Species Mean 2C genome size 
(SEa) (pg)

Mean CVb (%) Nc Standardd

Acaena magellanica 1.31 (0.023) 3.01 7 B.p.
Austroblechnum penna-marina 13.93 (0.368) 1.83 2 P.s.
Azorella selago 8.32 (0.063) 1.78 3 P.s.
Callitriche antarctica 2.99 2.62 1 S.p.
Carex dikei 2.89 (0.013) 1.50 3 S.p.
Colobanthus kerguelensis 0.82 (0.042) 2.66 3 S.p.
Elaphoglossum randii 21.44 (0.024) 1.34 3 P.s.
Leptinella plumosa 1.79 (0.020) 3.44 3 S.p.
Lycopodium magellanicum 5.37 (0.032) 2.34 2 P.s.
Phlegmariurus saururus 20.44 (0.115) 1.65 4 P.s.
Poa cookii (cytotype 1) 0.44 (0.001) 2.44 34 P.s.
Poa cookii (cytotype 2) 0.89 (0.012) 2.39 3 P.s.
Polystichum marionense 20.40 1.46 1 P.s.
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Sequences for rbcL and matK

The locus rbcL was relatively easy to amplify, and sequences 
for 19 of 21 species of indigenous vascular plants on Marion 
Island are now available. The locus matK proved more dif-
ficult to amplify. We were still able to generate sequence 
data for matK in 13 of 14 indigenous angiosperm species, 
but amplification was not successful in any non-angiosperm. 
A published sequence for matK is also available for Lyco-
podium magellanicum (GenBank accession AM889722), 
which we were unable to sequence in this study, so in total 
matK sequences are available for 14 species of Marion 
Island’s vascular flora. Both loci provided sufficient interspe-
cific sequence divergence and minimal intraspecific genetic 
distance to allow for easy discrimination between indigenous 
species. The locus matK showed higher sequence variability, 
consistent with results from studies of larger floras, but the 
lack of universal primers and lower recovery rate, especially 

in non-angiosperms, remain an issue (CBOL Plant Working 
Group 2009; Kress et al. 2009; Hollingsworth et al. 2011; 
Li et al. 2011).

Besides use in species identification, DNA sequence 
data generated in this study can be utilized in phylogenetic 
studies of evolutionary relationships among taxa. Although 
our study did not focus on this topic for any species, our 
sequence data can be used in conjunction with other avail-
able or newly generated data to explore questions about 
evolutionary relationships and the biogeographic origin 
of species on Marion Island (e.g., Jansen van Vuuren and 
Chown 2007). For example, a BLAST search against the 
GenBank database of the matK sequence from Marion 
Island Callitriche antarctica showed that it is most similar 
to sequences from C. antarctica from New Zealand and the 
Falkland/Malvinas Islands (GenBank numbers: LC176826-
LC176829) and then to C. petriei R.Mason from New Zea-
land (GenBank numbers: LC176851, LC176852), which 
supports the monophyly of C. antarctica specimens from 
across the sub-Antarctic and their close relationship to the 
New Zealand species (Ito et al. 2017).

Genome size

Genome size was successfully measured for 12 species using 
flow cytometry. The range of 2C values for Marion Island 
species, 0.44–21.44 pg, is on the lower end of the known 
range of 2C values for vascular plants, 0.13–304.4 pg (Pel-
licer et al. 2018; Leitch et al. 2019). This conforms to a 
pattern of smaller genome sizes in plants from colder envi-
ronments, as also observed for sub-Antarctic South Georgia 
Island and the Antarctic continent, which may result from 
the higher fitness of individuals with lower DNA amounts 
where colder temperatures result in slower DNA replication 
(Bennett et al. 1982; Rayburn et al. 1985; but for evidence of 
opposing patterns, see Bennett 1976; Levin and Funderburg 
1979; Murray et al. 2005).

Because fresh material was not available for Marion 
Island species, chromosome counts could not be per-
formed to give exact chromosome numbers to compare 
with our genome size data. Nonetheless, comparisons 
between our measurements and published genome size 
and ploidy level data can be made; however, it must be 
kept in mind that extrapolations to ploidy level based on 
genome size can be imprecise since nuclear DNA content 
can be very variable even at constant chromosome num-
bers (Mowforth and Grime 1989). With this caveat, we 
note the following comparisons (Fig. 4, Online Resource 
4). The mean 2C genome size of Marion Island Acaena 
magellanica was 1.31 pg, whereas the genome size for 
specimens of the same species from South Georgia was 
0.6 pg (Bennett et al. 1982), suggesting that the Marion 
Island specimens have double the ploidy of the South 
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Georgia population, which were assumed to be diploid. 
Given this, Marion Island specimens are likely to be 
tetraploid. The mean 2C genome size of Marion Island 
Austroblechnum penna-marina was 13.93 pg, whereas 
that for specimens of the closely related A. microphyllum 
(Goldm.) Gasper & V.A.O.Dittrich (= Blechnum micro-
phyllum (Goldm.) C.V.Morton) was 17.89 pg (Clark et al. 
2016). The 2C genome size of Marion Island Callitriche 
antarctica was 2.99 pg, whereas that for octoploid speci-
mens of the same species from South Georgia was 9.3 pg 
(Bennett et al. 1982), suggesting that the Marion Island 
specimens likely have a lower ploidy level. The mean 2C 
genome size of Marion Island Carex dikei was 2.89 pg, 
whereas that for specimens of the octoploid species C. 
meridensis (Steyerm.) J.R.Starr (= Uncinia meridensis 
Steyerm.) was 2.7 pg (Bennett et al. 1982), suggesting 
that the Marion Island specimens are likely also octoploid. 
The mean 2C genome size of Marion Island Colobanthus 
kerguelensis was 0.82 pg, whereas that for specimens 
of the tetraploid species C. quitensis (Kunth) Bartl. was 
1.4 pg (Bennett et al. 1982), suggesting that the Marion 
Island specimens are likely diploid. The mean 2C genome 
size of Marion Island Elaphoglossum randii was 21.44 pg, 
whereas those for specimens of the diploid species E. 
crinitum (L.) Christ, E. aubertii (Desv.) T.Moore, and E. 
hybridum (Bory) Brack. were 28.26, 34.59, and 66.99 pg, 
respectively (Clark et al. 2016), suggesting that the Marion 
Island specimens are likely also diploid. The mean 2C 
genome size of Marion Island Leptinella plumosa was 
1.79 pg, whereas that for specimens of the diploid spe-
cies Cotula coronopifolia L. was 4 pg (Leitch et al. 2019), 
suggesting that the Marion Island specimens are likely 
also diploid. The mean 2C genome size of Marion Island 
Lycopodium magellanicum was 5.37 pg, whereas those for 
specimens of the diploid species L. clavatum L., L. annoti-
num L., L. dendroideum Michx., and L. obscurum L. were 
5.71, 8.87, 9.52, and 9.58 pg, respectively (Bainard et al. 
2011), suggesting that the Marion Island specimens are 
likely also diploid. The mean 2C genome size of Marion 
Island Phlegmariurus saururus was 20.44 pg, whereas that 
for specimens of the diploid species Huperzia lucidula 
(Michx.) Trevis. was 11.27 pg (Bainard et al. 2011). Two 
cytotypes were detected for the Marion Island specimens 
of Poa cookii, with mean 2C genome sizes of 0.44 and 
0.89 pg, whereas specimens of the closely related tetra-
ploid species P. flabellata (Lam.) Raspail and P. ramosis-
sima Hook.f. were 5.5 and 5.69 pg, respectively (Bennett 
et al. 1982; Murray et al. 2005). The genome sizes of the 
Marion Island specimens are much smaller than that of the 
related species, and likely represent diploid and tetraploid 
cytotypes. The 2C genome size of Marion Island Polysti-
chum marionense was 20.4 pg, whereas that for specimens 
of the diploid species P. acrostichoides (Michx.) Schott 

was 15.5 pg (Bainard et al. 2011), suggesting that the 
Marion Island specimens are likely also diploid. We did 
not find any published genome size data for close relatives 
of Azorella selago in the literature. Overall, we estimate 
that many of the vascular plant species on Marion Island 
are diploid, but more precise analyses of the proportions 
of diploid and polyploid species will have to await results 
from chromosome counts.

Conclusions

The islands of the sub-Antarctic region are some of 
the most isolated and least disturbed places on Earth. 
Therefore, they comprise one of the few regions where 
the indigenous flora can be characterized so fully, and 
where processes such as natural, as opposed to human-
mediated, dispersal documented (e.g., Kalwij et al. 2019). 
Our updated checklist of the indigenous vascular flora of 
Marion Island reflects current understanding of taxonomic 
relationships and will allow for consistent communication 
about components of the sub-Antarctic flora across regions 
and studies. This information is key to understanding 
diversity patterns and drivers of diversity processes in the 
sub-Antarctic region as a whole (e.g., Chown et al. 1998; 
Greve et al. 2005; Shaw et al. 2010). At a local scale, 
the genetic information we present, namely sequence data 
for the universal plant barcoding loci rbcL and matK and 
genome size estimates, can facilitate the study and man-
agement of Marion Island’s flora by providing additional 
resources for the recognition of species and cytotypes. 
Lastly, at a regional scale, DNA sequence data will enable 
broader phylogenetic studies into evolutionary and biogeo-
graphic patterns and processes across the sub-Antarctic 
region (e.g. Ito et al. 2017; Lehnebach et al. 2017).
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